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Subject

One-loop amplitudes in QCD, as the virtual contribution and “bottleneck” to

computing hard-scattering cross sections at NLO.

Fully analytic approach:

• possibly competitive with partly numerical methods

• explore more formal features of perturbation theory



Status

2 → 3 processes are state of the art in QCD at NLO.

Complexity increases with number of kinematic variables. Last year,

complexity of 2 → 4 was tackled with results for the 6-gluon amplitude:

• Semi-numerical method, Feb. 2006

Ellis, Giele, Zanderighi

• Analytic results completed, July 2006

Bern, Dixon, Dunbar, Kosower (x2); Bidder, Bjerrum-Bohr, Dixon, Dunbar; RB, Buchbinder, Cachazo,

Feng; Bidder, Bjerrum-Bohr, Dunbar, Perkins (x2); Bedford, Brandhuber, Spence, Travaglini; Bern,

Bjerrum-Bohr, Dunbar, Ita; Bern, Dixon, Kosower; RB, Feng, Mastrolia; Berger, Bern, Dixon, Forde,

Kosower (x2); Xiao, Yang, Zhu



Cut construction

One-loop amplitudes in gauge theory have long been known to be

“cut-constructible”, i.e. fully determined by unitarity cuts, but concrete

methods of carrying out the construction have become available only

recently.

In this talk I present a systematic procedure to construct one-loop

amplitudes in gauge theory from their unitarity cuts.

There are no restrictions on helicities.

Our principal new tool is spinor integration. This procedure is in fact

algebraic.⋆

Although spinors are naturally suited to massless particles in four

dimensions, the formalism applies to more general amplitudes.



no twistors here

twistor string theory

↓
twistor geometry

↓
good old spinors



Contents

• Preliminaries: color decomposition & basis of integrals

• Unitarity cuts

• Quadruple cuts for box integrals

• Spinor-helicity formalism

• Spinor integration for ordinary unitarity cuts

• Dimensional regularization



Color Decomposition

(Berends, Giele; Mangano, Parke, Xu; Mangano; Bern, Kosower)

A1−loop
n ({pµ

i , ǫ
µ
i , ai}) =

g
N

∑

σ∈Sn/Zn

Nc Tr(T aσ(1) . . . T
aσ(n))An;1(σ(pµ

1 , ǫ
µ
1 ), . . . , σ(pµ

n, ǫ
µ
n))

+g
N

⌊n/2⌋+1∑

c=2

∑

σ∈Sn/Sn;c

Tr (T aσ(1) · · ·T aσ(c−1)) Tr (T aσ(c) · · ·T aσ(n))

× An;c(σ(pµ
1 , ǫ

µ
1 ), . . . , σ(pµ

n, ǫ
µ
n))

“color ordered partial amplitudes”

Need only leading-color partial amplitudes An;1; these determine the

others. (Bern, Dixon, Dunbar, Kosower)

Retain only cyclic ordering.

Convention: All momenta are incoming.



Basis of Master Integrals

Passarino-Veltman reduction brings the one-loop amplitude to the form

An;1 =
∑

i

di (box) +
∑

i

ci (triangle) +
∑

i

bi (bubble) + rational

where expressions for scalar bubble, scalar triangle and scalar box integrals

are known explicitly. (in dim. reg.: Bern, Dixon, Kosower )

box triangle bubble

K1

K2 K3

K4

2K

K3

K1

K412 n
n−1

a

c

d

b



K 2

K 1 K 4

K 3

l

=

∫
d4−2ǫℓ

1

ℓ2(ℓ − K1)2(ℓ − K1 − K2)2(ℓ + K4)2

• Depending on how many massive legs, we have I4m
4 , I3m

4 , I2m e
4 ,

I2m h
4 , I1m

4 , I3m
3 , I2m

3 , I1m
3 and I2m

2 .

e.g. I2m
3 has 3 legs (“triangle integral”) of which 2 are massive.

• So the problem is reduced to finding the coefficients bi, ci, di, which

are rational functions of the spinor products 〈i j〉 and [i j] (plus the

rational piece, which we will deal with later).



Unitarity Cuts

l2

l1

j+1

i−1
i

j

j+2

i+1

C =

∫
dµ Atree

L Atree
R

The measure is

dµ = d4ℓ1 d4ℓ2 δ(4)(ℓ1 + ℓ2 − K) δ+(ℓ21) δ+(ℓ22).

Drop the principal part of the two Feynman propagators, leaving the delta

function that places their momenta on-shell.



This quantity is the discontinuity ∆ of the amplitude across the

corresponding branch cut.

C = ∆A1−loop
n

By unitarity, this is the imaginary part of the amplitude in the kinematic

regime where K2 > 0 and all other momentum invariants are negative.

Unitarity methods use “cut constructibility” in terms of the master integrals.

(Bern, Dixon, Dunbar, Kosower; Cachazo)

C = ∆A1−loop
n =

∑
c ∆I



C = ∆A1−loop
n =

∑
c ∆I

We still get several coefficients together in the same equation.

Earlier versions of the “unitarity method” involved integral reduction and an

intelligent ansatz for a given coefficient based on singularities. (Bern, Dixon,

Dunbar, Kosower; Bern, Del Duca, Dixon, Kosower)

Recently we learned how to extract any given coefficient directly,

systematically and algebraically.

Box coefficients can be isolated individually using quadruple cuts, which are

particularly simple to evaluate in four dimensions.



Box Coefficients from Quadruple Cuts

(RB, Cachazo, Feng)

l 2

l 3

l 4

l 1

j

ii+1

m+1

k+1k

m
j+1

There is a notion of generalized unitarity. The box diagram has a leading

singularity whose discontinuity is given by replacing all four propagators by

their on-shell delta functions. This leading singularity picks out a given box

uniquely.

We are in four dimensions, so four delta functions localize the integral

completely. This computation is very easy!



The solutions of loop momenta

The box coefficients computed from quadruple cuts are given by

1

2

∑

S

Atree
1 Atree

2 Atree
3 Atree

4

S is the set of all solutions of the on-shell conditions for the internal lines.

S = { ℓ | ℓ2 = 0, (ℓ−K1)
2 = 0, (ℓ−K1−K2)

2 = 0, (ℓ+K4)
2 = 0}

Can these equations always be solved?

In complexified momentum space, there are exactly 2 solutions.

(Moreover, 3-point amplitudes do not always vanish.)



We have learned to distinguish the contributions from boxes, triangles and

bubbles even when they participate in the same unitarity cut. The cut boxes

and triangles have logarithms of unique “signature” functions of kinematic

invariants, while the cut bubbles are entirely rational.

So there is no strict need for generalized cuts of one-loop amplitudes.

It is particularly efficient to get box coefficients from quadruple cuts.

However, it is not obvious that it saves work to separate triangle coefficients

through triple cuts.

Let us simply understand how to carry out the integration of double cuts.

Techniques have improved by revisiting the spinor-helicity formalism.



Spinor-Helicity Formalism

Berends, Kleiss, De Causmaecker, Gastmans, Wu (1981); De Causmaecker,

Gastmans, Troost, Wu (1982); Kleiss, Stirling (1985); Gastmans, Wu (1990); Xu,

Zhang, Chang (1987); Gunion, Kunszt (1985)

Lorentz group ∼ SL(2) × SL(2), so we have spinors of positive and

negative chirality, λa of ( 1
2 , 0) and λ̃ȧ of (0, 1

2 ) with a, ȧ = 1, 2.

General 4-vector: Paȧ = λaλ̃ȧ + λ′
aλ̃′

ȧ.

Null vector: paȧ = λaλ̃ȧ.



Lorentz invariant spinor products:

〈1 2〉 ≡ 〈λ1 λ2〉 ≡ ǫabλ
a
1λb

2

[1 2] ≡ [λ̃1 λ̃2] ≡ ǫȧḃλ̃
ȧ
1 λ̃ḃ

2

(〈1 2〉 [1 2] = s12)



Lorentz invariant spinor products:

〈1 2〉 ≡ 〈λ1 λ2〉 ≡ ǫabλ
a
1λb

2

[1 2] ≡ [λ̃1 λ̃2] ≡ ǫȧḃλ̃
ȧ
1 λ̃ḃ

2

(〈1 2〉 [1 2] = s12)

Helicities of gluons in terms of spinors:

− : ǫaȧ =
λaµ̃ȧ

[λ̃ µ̃]
+ : ǫ̃aȧ =

λ̃ȧµa

〈µ λ〉

where µ and µ̃ are arbitrary.



Lorentz invariant spinor products:

〈1 2〉 ≡ 〈λ1 λ2〉 ≡ ǫabλ
a
1λb

2

[1 2] ≡ [λ̃1 λ̃2] ≡ ǫȧḃλ̃
ȧ
1 λ̃ḃ

2

(〈1 2〉 [1 2] = s12)

Helicities of gluons in terms of spinors:

− : ǫaȧ =
λaµ̃ȧ

[λ̃ µ̃]
+ : ǫ̃aȧ =

λ̃ȧµa

〈µ λ〉

where µ and µ̃ are arbitrary.

More notation:
Pi,j ≡ pi + pi+1 + · · · + pj

〈a|Pi,j |b] ≡
j∑

r=i

〈a r〉 [r b]



MHV tree amplitudes

(Parke, Taylor; Berends, Giele)

A(1+, 2+, . . . , j−, . . . , k−, . . . , n − 1+, n+)

=
〈j k〉4

〈1 2〉〈2 3〉 . . . 〈n − 1 n〉〈n 1〉



Complexified Momenta – Spacetime Signatures

In real Minkowski space, the spinors λa and λ̃ȧ are complex-valued and

conjugate to each other.

It is useful to consider the spinors λa and λ̃ȧ as complex-valued and

independent. One can think of this as complexified momentum space.

This means that we treat the amplitude as a complex function of the spinor

products 〈λ λ′〉 and [λ̃ λ̃′]. We can examine its analytic structure. At the

end, we may specialize to physical momentum space.

This approach allowed us to propose and derive on-shell recursion relations

for tree amplitudes.



Recursion Relations for Tree Amplitudes of Gluons

(RB, Cachazo, Feng; RB, Cachazo, Feng, Witten)

Derived from residue theorem after introducing a complex variable z.

Amplitude expressed in terms of factorization limits.

An(1, . . . , n−2, (n−1)−, n
+) =

n−3∑

i=1

∑

h=+,−

Ai+2(n̂, 1, . . . , i,−P̂
h
n,i)

1

P 2
n,i

An−i(+P̂
−h
n,i , i+1, . . . , n−2, n̂ − 1)

where

Pn,i = pn + p1 + . . . + pi, P̂n,i = Pn,i +
P 2

n,i

〈n − 1|Pn,i|n]
λn−1λ̃n,

ˆ̃
λn−1 = λ̃n−1 −

P 2
n,i

〈n − 1|Pn,i|n]
λ̃n, λ̂n = λn +

P 2
n,i

〈n − 1|Pn,i|n]
λn−1.



Complexified Momenta and Three-Gluon Amplitudes

(Witten)

r

p

q

r2 = 0 ⇒ p · q = 0.

2p · q = 〈λp λq〉[λ̃p λ̃q] ⇒ 〈λp λq〉 = 0 or [λ̃p λ̃q] = 0.

That is, λp ∼ λq or λ̃p ∼ λ̃q .

In Minkowski signature with real momenta, λ̃ = ±λ̄, so we have

both 〈λp λq〉 = 0 and [λ̃p λ̃q] = 0.



A(p+, q+, r−) =
[λ̃p λ̃q]

3

[λ̃q λ̃r][λ̃r λ̃p]
A(p−, q−, r+) =

〈λp λq〉3
〈λq λr〉〈λr λp〉

In Minkowski signature with real momenta, both of these amplitudes vanish.

Working with complexified momenta, these vertices do not always vanish.

They just select one of the two conditions of proportional spinors.

A(p+, q+, r−) : 〈λp λq〉 = 〈λp λr〉 = 〈λq λr〉 = 0

(λp ∼ λq ∼ λr)

A(p−, q−, r+) : [λ̃p λ̃q] = [λ̃p λ̃r] = [λ̃q λ̃r] = 0

(λ̃p ∼ λ̃q ∼ λ̃r)



Box Coefficient from Quadruple Cut
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(b)

coeff =
1

2

[ℓ1 ℓ4]
3

[ℓ1 2][2 ℓ4]

[4 ℓ2]
3

[ℓ2 ℓ1][ℓ1 3][3 4]

[5 6]3

[6 ℓ3][ℓ3 ℓ2][ℓ2 5]

[ℓ3 7]3

[7 1][1 ℓ4][ℓ4 ℓ3]



coeff =
1

2

[ℓ1 ℓ4]
3

[ℓ1 2][2 ℓ4]

[4 ℓ2]
3

[ℓ2 ℓ1][ℓ1 3][3 4]

[5 6]3

[6 ℓ3][ℓ3 ℓ2][ℓ2 5]

[ℓ3 7]3

[7 1][1 ℓ4][ℓ4 ℓ3]

Multiply and divide by 〈ℓ4 ℓ1〉3〈ℓ2 ℓ1〉3〈ℓ1 ℓ3〉3.

1

2

[ℓ1|ℓ4|ℓ1〉
3

[ℓ1 2] [2|ℓ4|ℓ1〉

[4|ℓ2|ℓ1〉
3

〈ℓ1|ℓ2|ℓ1] [ℓ1 3][3 4]

[5 6]3

[6|ℓ3|ℓ1〉 〈ℓ1|ℓ3|ℓ2|ℓ1〉 〈ℓ1|ℓ2|5]

〈ℓ1|ℓ3|7]
3

[7 1] [1|ℓ4|ℓ1〉 〈ℓ1|ℓ4|ℓ3|ℓ1〉

Now ℓ2, ℓ3, ℓ4 appear as vectors and can be expressed in terms of ℓ1.



coeff =
1

2

[ℓ1 ℓ4]
3

[ℓ1 2][2 ℓ4]

[4 ℓ2]
3

[ℓ2 ℓ1][ℓ1 3][3 4]

[5 6]3

[6 ℓ3][ℓ3 ℓ2][ℓ2 5]

[ℓ3 7]3

[7 1][1 ℓ4][ℓ4 ℓ3]

Multiply and divide by 〈ℓ4 ℓ1〉3〈ℓ2 ℓ1〉3〈ℓ1 ℓ3〉3.

1

2

[ℓ1|ℓ4|ℓ1〉
3

[ℓ1 2] [2|ℓ4|ℓ1〉

[4|ℓ2|ℓ1〉
3

〈ℓ1|ℓ2|ℓ1] [ℓ1 3][3 4]

[5 6]3

[6|ℓ3|ℓ1〉 〈ℓ1|ℓ3|ℓ2|ℓ1〉 〈ℓ1|ℓ2|5]

〈ℓ1|ℓ3|7]
3

[7 1] [1|ℓ4|ℓ1〉 〈ℓ1|ℓ4|ℓ3|ℓ1〉

Now ℓ2, ℓ3, ℓ4 appear as vectors and can be expressed in terms of ℓ1.

Expand |ℓ1〉 = α|2〉 + β|3〉, |ℓ1] = γ|2] + δ|3].
Solve 0 = ℓ22 = ℓ23 = ℓ24 for α, β, γ, δ. (Remaining freedom is

guaranteed to drop out.)



coeff =
1

2

[ℓ1 ℓ4]
3

[ℓ1 2][2 ℓ4]

[4 ℓ2]
3

[ℓ2 ℓ1][ℓ1 3][3 4]

[5 6]3

[6 ℓ3][ℓ3 ℓ2][ℓ2 5]

[ℓ3 7]3

[7 1][1 ℓ4][ℓ4 ℓ3]

Multiply and divide by 〈ℓ4 ℓ1〉3〈ℓ2 ℓ1〉3〈ℓ1 ℓ3〉3.

1

2

[ℓ1|ℓ4|ℓ1〉
3

[ℓ1 2] [2|ℓ4|ℓ1〉

[4|ℓ2|ℓ1〉
3

〈ℓ1|ℓ2|ℓ1] [ℓ1 3][3 4]

[5 6]3

[6|ℓ3|ℓ1〉 〈ℓ1|ℓ3|ℓ2|ℓ1〉 〈ℓ1|ℓ2|5]

〈ℓ1|ℓ3|7]
3

[7 1] [1|ℓ4|ℓ1〉 〈ℓ1|ℓ4|ℓ3|ℓ1〉

Now ℓ2, ℓ3, ℓ4 appear as vectors and can be expressed in terms of ℓ1.

Expand |ℓ1〉 = α|2〉 + β|3〉, |ℓ1] = γ|2] + δ|3].
Solve 0 = ℓ22 = ℓ23 = ℓ24 for α, β, γ, δ. (Remaining freedom is

guaranteed to drop out.)

coeff = − 〈1 2〉3〈2 3〉3[5 6]3

〈7 1〉〈3 4〉 〈2|P3,4|5] 〈2|P7,1|6] 〈2|P3,4P5,6|7〉〈2|P7,1P5,6|4〉



Double Cut Integrals

A closer look at the phase space integral:

Ci,...,j =

∫
dµ Atree(−ℓ, i, . . . , j, ℓ−K) Atree(K−ℓ, j+1, . . . , i−1, ℓ)

dµ = d4ℓ δ+(ℓ2) δ+((ℓ − K)2)

Cachazo, Svrček, Witten: Change to spinor variables with

ℓaȧ = t λaλ̃ȧ.

t is real. The spinors λ and λ̃ are independent, homogeneous coordinates

on two copies of CP 1. The integral is over the contour λ̃ = λ̄.

∫
d4ℓ δ+(ℓ2) (•) =

∫ ∞

0

dt t

∫
〈λ dλ〉 [λ̃ dλ̃] (•)



Steps in spinor integration

(RB, Buchbinder, Cachazo, Feng; RB, Feng, Mastrolia)

• Change variables, ℓ = tλλ̃, and use the spinor measure,
∫

d4ℓ δ(ℓ2) δ((ℓ − K)2) (•)

=

∫ ∞

0

dt t

∫
〈λ dλ〉 [λ̃ dλ̃] δ((tλλ̃ − K)2)(•)

• Use 2nd delta function to perform t-integral.

• Simplify denominators with spinor identities.

• Express result as a total spinor-derivative plus delta functions. May

involve introducing one Feynman parameter.



The plan is to use the equation

∆A1−loop
n =

∑
c ∆I

to extract the coefficients and then reconstruct the amplitude.

The discontinuities ∆I are immediately computable.

First I illustrate the cut of the bubble and 3-mass triangle.

These examples show the essential ideas that we will need for the cut of the

amplitude on the left hand side.



Cutting the bubble

∆I2 =

∫
d4ℓ δ+(ℓ2) δ+((ℓ − K)2)

Substitute ℓ = tλλ̃ and the spinor measure.

Also use:

δ((ℓ − K)2) = δ(K2 − 2K · ℓ)
= δ(K2 + t

〈
λ|K|λ̃

]
)

=
1〈

λ|K|λ̃
]δ


t +

K2

〈
λ|K|λ̃

]






• After t-integration we get

∆I2 =

∫
〈λ dλ〉 [λ̃ dλ̃]

K2

〈
λ|K|λ̃

]2

• A key observation: (Cachazo, Svrček, Witten)

[λ̃ dλ̃]
1

〈
λ|K|λ̃

]2 = [dλ̃ ∂
λ̃
]


 [η λ̃]

〈λ|K|η]
〈
λ|K|λ̃

]




The integral is naively zero.

However, the contour of integration is where λ̃ is the complex conjugate

of λ, so there is a delta-function contribution because

∂

∂z

1

(z − b)
= 2πδ(z − b).



• Applied to our case, we see that there is a contribution from the pole at

|λ〉 = |K|η], ⇒ |λ̃] = |K|η〉

• Final result for the cut bubble:

∆I2 =

∫
〈λ dλ〉 [λ̃ dλ̃]

K2

〈
λ|K|λ̃

]2

= −K
2


 [η λ̃]〈

λ|K|λ̃
]



∣∣∣∣∣∣
|λ〉=|K|η]

= −1



Cutting the three-mass triangle

∆I3 =

∫
d4ℓ δ+(ℓ2)

δ+((ℓ − K1)
2)

(ℓ + K3)2

• After t-integration:

∆I3 =

∫
〈λ dλ〉 [λ̃ dλ̃]

1〈
λ|K1|λ̃

] 〈
λ|Q|λ̃

]

where Qaȧ =
K2

3

K2
1
(K1,aȧ) + (K3,aȧ) and Q2 =

K2
3K2

2

K2
1

.

• Introduce a Feynman parameter:

∆I3 =

∫ 1

0

dz

∫
〈λ dλ〉 [λ̃ dλ̃]

1
〈
λ|(1 − z)K1 + zQ|λ̃

]2



• Now we know how to do this integral:

∆I3 = −
∫ 1

0

dz
1

((1 − z)K1 + zQ)2

= −
∫ 1

0

dz
1

K2
1 + 2z((K1 · Q) − K2

1 ) + z2(Q − K1)2

• Define a = (Q − K1)
2, b = 2((K1 · Q) − K2

1 ) and c = K2
1 . The

result is

∆I3 =
1√
∆3m

ln

(
2az + b −

√
∆3m

2az + b +
√

∆3m

)

with

∆3m = (K2
1 )2 − 2K2

1K2
2 − 2K2

3K2
1 + (K2

2 − K2
3 )2

• The argument of the logarithm (easily identified via the square root√
∆3m) functions as the signature of the three-mass triangle function.



At this point we proceeded by cutting the amplitude and relating the cut

integral to the cuts of master integrals.

So far, it has been essential that the unitarity cut is strictly in four

dimensions. This is because we relied on the spinor formalism.

The price is that we miss the “rational” terms.

There are neat new ways to get the rational terms of 4-d amplitudes:

• on-shell recursions at one loop (Bern, Dixon, Kosower; Berger, Dixon,

Forde, Kosower)

• Feynman diagrams with targeted reduction (Xiao, Yang, Zhu; Binoth,

Guillet, Heinrich)



We can get the rational terms as well by working in full dimensional

regularization. All one-loop amplitudes are cut-constructible in 4 − 2ǫ

dimensions (van Neerven). We have recently learned how to adapt spinor

integration to these calculations in “d-dimensional unitarity.” (Anastasiou,

RB, Feng, Kunszt, Mastrolia)

Dimensional regularization:

• implicit till now, but computed only up to O(ǫ);

• allows complete one-loop calculations, including rational part;

• is the same formalism needed for massive particles.



Dimensional Regularization

• Write p = ℓ̃ + ~µ, where ℓ̃ is 4-dimensional and ~µ is

(−2ǫ)-dimensional. (Bern, Chalmers; Bern, Morgan)

∫
d4−2ǫp

(2π)4−2ǫ
=

∫
d4ℓ̃

(2π)4

∫
d−2ǫµ

(2π)−2ǫ
=

∫
d4ℓ̃

(2π)4
(4π)ǫ

Γ(−ǫ)

∫
dµ

2(µ2)−1−ǫ
.

• Relate the ℓ̃ to a null 4-momentum via the cut momentum K .

ℓ̃ = ℓ + zK, ℓ2 = 0

∫
d4ℓ̃ =

∫
dz d4ℓ (2ℓ · K) δ+(ℓ2).

Replace µ2 by a dimensionless variable u = 4µ2

K2 ∈ [0, 1].

The z-integral is trivial:

z =
(1 −

√
1 − u)

2
.



Cutting the Amplitude

∫
d
4
ℓ δ(ℓ2) δ((ℓ − K)2)Atree

L A
tree
R

=

∫ ∞

0

t dt

∫

λ̃=λ

〈λ dλ〉 [λ̃ dλ̃] δ

(
K

2 + t

〈
λ|K|λ̃

])
A

tree
L (t, λ, λ̃)Atree

R (t, λ, λ̃)

• After t-integration, we find terms of the form:

Iterm =
G(λ)

∏n+k−2
j=1 [aj λ̃]

〈
λ|K|λ̃

]n∏k
i=1

〈
λ|Qi|λ̃

]

• Apply Schouten’s identity to split up denominators; express as total

derivatives plus delta functions.

• Identify expressions with cuts of basis integrals and read off coefficients.

• We have given formulas for the coefficients and instructions for how to

evaluate them. (RB, Feng)



Box coefficients

Cbox;ij =
K2

√
1 − u

(
Fi,j(P

(ij)
1 ) + Fi,j(P

(ij)
2 )

2

)

P
(ij)
1,2

= Qj + y
(ij)
1,2

Qi (i < j)

y
(ij)
1,2

=
−2Qi · Qj ±

√
∆(ij)

2Q2
i

, ∆(ij) = (2Qi · Qj )2 − 4Q2
i Q2

j

Fi,j(ℓ) =

G(λ)

∏n+k−2

s=1

[
as|Qi|ℓ

〉

〈ℓ|KQi|ℓ〉
n
∏k

t=1,t 6=i,j
〈ℓ|QtQi|ℓ〉



Boxes and Pentagons

In d dimensions, pentagons are independent master integrals. But the cut

pentagons are closely related to boxes. (In pentagon integrands, powers of

u can appear in the denominator.)

The preceding formula actually included both box and pentagon

coefficients.

We have to do polynomial division:

Cbox;ij(u) = H(u) +
∑

l

AlPl

H(u) is polynomial; Pl the pentagon cut; Al is constant in u.

Then H(u) is the box coefficient and Al is the pentagon coefficient.



Triangle coefficients

Ctri;i =

√
∆(i)

2

√
1 − u





(
G(λ)

∏n+k−2

s=1

[
as|Qi|λ

〉

〈λ|KQi|λ〉n
∏k

t=1,t 6=i
〈λ|QtQi|λ〉

)∣∣∣∣∣
〈λ P

(i)
1

〉=0

−

(
G(λ)

∏n+k−2

s=1

[
as|Qi|λ

〉

〈λ|KQi|λ〉n
∏k

t=1,t 6=i
〈λ|QtQi|λ〉

)∣∣∣∣∣
〈λ P

(i)
2

〉=0





P
(i)
1,2

= Qi + x
(i)
1,2

K

x
(i)
1,2

=
−2Qi · K ±

√
∆(i)

2K2
, ∆(i) = (2Qi · K)2 − 4Q2

i K2



Residues from multiple poles

Could evaluate by splitting with Schouten identities. (RB, Feng, Mastrolia) More directly,
introduce a parameter to break degeneracy:

1

〈ℓ η〉n

∏
i
〈ℓ ai〉∏

j
〈ℓ bj〉

→
1∏n−1

s=0
〈ℓ (η + sτα)〉

∏
i
〈ℓ ai〉∏

j
〈ℓ bj〉

=
1

τn−1〈η α〉n−1

∏
i
〈η ai〉∏

j
〈η bj〉

(
n−1∑

s0=0

1∏n−1

s=0,s 6=s0
(s − s0)

∏
i
(1 + τs0

〈α ai〉

〈η ai〉
)

∏
j
(1 + τs0

〈α bj〉

〈η bj〉
)

)
.

Expand expression inside parentheses in τ , up to order τn−1. Result for residue:

1

〈η α〉n−1

∏
i
〈η ai〉∏

j
〈η bj〉

(
n−1∑

s0=0

s
n−1
0∏n−1

s=0,s 6=s0
(s − s0)

∑(
k∏

j=1

(−)mj

(
〈α bj〉

〈η bj〉

)mj

)

(∑ N1∏

q=1

〈α aiq 〉

〈η aiq 〉

))
.

(RB, Feng)



Bubble coefficients

Rational =
1√

1 − u

n−1∑

s=1

R[K̃(s), {Qi}, η]

∣∣∣∣∣
τ→0

The limit is taken by expanding and truncating the series.

R[K̃(s), {Qi}, η] =

∑

poles exceptη

Res

(
G(λ)

∏n+k−2

j=1

[
aj |K̃(s)|λ

〉

τn−2〈λ|ηK̃(s)|λ〉n−1
∏n−1

s′=1,s′ 6=s
(s′ − s)

∏k

i=1
〈λ|QiK̃(s)|λ〉

×

(
n−2∑

h=0

τhsh
〈

λ|η|λ̃

]h+1

(h + 1)

〈
λ|K̃(s)|λ̃

]h+1

))

K̃(s) = K + τsη



The phase space measure becomes (Anastasiou, RB, Feng, Kunszt, Mastrolia)

∫
du u−1−ǫ

∫
〈λ dλ〉 [λ̃ dλ̃]

∫ ∞

0

dt t δ
(√

1 − uK2 + t
〈
λ|K|λ̃

])

We recognize and perform the spinor integral as before. Any 4-dimensional

technique can be applied.

For physical reasons (PV reduction), the integrand must be a sum of the

following (after extracting pentagons):

Bub(n) =

∫ 1

0

du u
−1−ǫ

u
n
√

1 − u

Tri(n) =

∫ 1

0

du u
−1−ǫ

u
n ln

(
Z +

√
1 − u

Z −
√

1 − u

)

Box(n) =

∫ 1

0

du u
−1−ǫ un

√
B − Au

ln

(
D − Cu −

√
1 − u

√
B − Au

D − Cu +
√

1 − u
√

B − Au

)

where Z2, A, B,C,D are rational functions of kinematical invariants of the

external momenta.



Dimensional shift identities

Bub(n) = F
(n)
2→2Bub(0)

Tri(n) = F
(n)
3→3Tri(0) + F

(n)
3→2Bub(0)

Box(n) = F
(n)
4→4Box(0) + F

(n)
4→3Tri(0) + F

(n)
4→2Bub(0)

F
(n)
2→2

=

(−ǫ) 3
2

(n − ǫ) 3
2

, F
(n)
3→3

=
−ǫ

n − ǫ
(1 − Z

2
)
n

,

F
(n)
4→4

=

(−ǫ) 1
2

(n − ǫ) 1
2

(
B

A

)n

,

F
(n)
3→2

=

(−ǫ) 3
2

n − ǫ

n∑

k=1

2Z(1 − Z2)n−k

(k − ǫ) 1
2

F
(n)
4→j

=
D + (Z2 − 1)C

(n − ǫ) 1
2

ZA

n∑

k=1

(
B

A

)n−k F
(k−1)
3→j

(k − 1/2 − ǫ) 1
2



We have also given reduction formulas with explicit propagator masses.

(RB, Feng)

In this case, the basis also includes tadpoles. These cannot be detected by

unitarity methods. We believe these coefficients can be determined by

divergences or a heavy mass limit.



Summary

• Spinors are a good choice for writing massless particles in 4

dimensions. With spinor integration techniques, we have advanced the

unitarity approach to computing amplitudes.

• Quadruple cuts isolate scalar box coefficients.

• Isolate coefficients of any master integrals by matching logarithms in

discontinuities. Algebraic∗ operations. Formulas given.

• Dimensional shift identities for dimensionally regularized integrals.

Results to all orders in ǫ.


